Datadog

Datadog Platform Integration

Deploy TYCHON Quantum Readiness via Datadog Agent with comprehensive observability and SIEM integration

Integration Overview

Leverage Datadog's comprehensive observability platform to deploy TYCHON Quantum Readiness across your infrastructure, collect cryptographic intelligence, and create unified security dashboards with metrics, logs, and APM data.

Datadog

Agent Deployment

Deploy via Datadog Agent custom checks

Datadog

Unified Observability

Metrics, logs, and traces in one platform

Datadog

Intelligent Alerting

ML-powered anomaly detection and alerts

Step 1: Datadog Account & Platform Setup

1.1 Create Datadog Account

If you don't have a Datadog account:
  1. Visit datadoghq.com/free-trial
  2. Sign up for a free 14-day trial (no credit card required)
  3. Choose your Datadog site region (US1, EU, US3, US5, etc.)
  4. Complete email verification and initial setup wizard
  5. Select "Infrastructure Monitoring" and "Log Management" during onboarding
If you have an existing Datadog account:
  1. Log into your Datadog dashboard at app.datadoghq.com
  2. Ensure you have "Admin" or "Standard" user permissions
  3. Verify Log Management and Custom Metrics are enabled in your plan

1.2 Generate API Keys

Create your API keys for TYCHON integration:
  1. In Datadog, go to Organization Settings → API Keys (bottom left gear icon)
  2. Click "New Key" and name it "TYCHON-ACDI-Scan-Engine"
  3. Copy and securely store the API key (you won't see it again)
  4. Go to Organization Settings → Application Keys
  5. Click "New Key" and name it "TYCHON-ACDI-App-Key"
  6. Copy and securely store the Application key
  7. Note your Datadog site (e.g., datadoghq.com, datadoghq.eu)
Example API Key Storage:
export DD_API_KEY="your-32-char-api-key-here"
export DD_APP_KEY="your-40-char-app-key-here"  
export DD_SITE="datadoghq.com"

1.3 Enable Required Features

Verify these Datadog features are enabled:
  1. Go to Plan & Usage → Usage Details
  2. Verify "Log Management" is enabled (required for scan result ingestion)
  3. Verify "Custom Metrics" allowance (check your current usage vs. limit)
  4. If using APM: verify "APM" is enabled for tracing correlation
💡 Cost Planning:
• Each scan generates ~50-500 custom metrics per host
• Log volume: ~1-10MB per comprehensive scan
• Consider starting with smaller scans to estimate costs

Step 2: Install Datadog Agent

2.1 Agent Installation by Platform

🐧 Linux (Ubuntu/Debian/RHEL/CentOS)

# Replace YOUR_API_KEY with your actual API key from Step 1.2
DD_API_KEY="your-32-char-api-key-here" DD_SITE="datadoghq.com" bash -c "$(curl -L https://s3.amazonaws.com/dd-agent/scripts/install_script_agent7.sh)"

# Verify agent is running
sudo systemctl status datadog-agent

# Check agent logs for successful connection  
sudo tail -f /var/log/datadog/agent.log

🪟 Windows

# Run as Administrator in PowerShell
# Download and install Datadog Agent
$env:DD_API_KEY="your-32-char-api-key-here"
$env:DD_SITE="datadoghq.com"

# Download installer
Invoke-WebRequest -Uri "https://s3.amazonaws.com/ddagent-windows-stable/datadog-agent-7-latest.amd64.msi" -OutFile "datadog-agent.msi"

# Install with API key
msiexec /qn /i datadog-agent.msi APIKEY="your-32-char-api-key-here" SITE="datadoghq.com"

# Verify installation
Get-Service | Where-Object {$_.Name -eq "DatadogAgent"}

# Check logs
Get-Content "C:\ProgramData\Datadog\logs\agent.log" -Tail 20

🍎 macOS

# Replace YOUR_API_KEY with your actual API key from Step 1.2
DD_API_KEY="your-32-char-api-key-here" DD_SITE="datadoghq.com" bash -c "$(curl -L https://s3.amazonaws.com/dd-agent/scripts/install_script_agent7.sh)"

# Verify agent is running
sudo launchctl list | grep datadog-agent

# Check agent status
sudo datadog-agent status

# View logs
sudo tail -f /opt/datadog-agent/logs/agent.log

2.2 Verify Agent Connection

After installation, verify your agent is connected:
  1. Go to Infrastructure → Host Map in your Datadog dashboard
  2. Look for your newly installed host (may take 2-3 minutes to appear)
  3. Click on your host to see basic metrics like CPU, memory, disk
  4. If you don't see your host, check the agent logs for connection errors
Troubleshooting Agent Connection:
# Check agent status
sudo datadog-agent status

# Test connectivity
sudo datadog-agent check connectivity-datadog-core

# Restart agent if needed (Linux/macOS)
sudo systemctl restart datadog-agent

# Restart agent (Windows)  
net stop DatadogAgent && net start DatadogAgent

Step 3: Deploy TYCHON Quantum Readiness

3.1 Install TYCHON Quantum Readiness Binary

Download and install the appropriate TYCHON Quantum Readiness binary for your platform:
  1. Download the platform-specific binary from your TYCHON release package or from Cloudflare R2 distribution
  2. Create installation directory: sudo mkdir -p /opt/certscanner
  3. Copy binary to installation path:
Platform-Specific Installation:
# Linux
sudo cp certscanner-linux-x64 /opt/certscanner/certscanner
sudo chmod +x /opt/certscanner/certscanner

# Windows (run as Administrator)
copy certscanner-windows-amd64.exe C:\Program Files\certscanner\certscanner.exe

# macOS  
sudo cp certscanner-darwin-arm64 /opt/certscanner/certscanner  # Apple Silicon
sudo cp certscanner-darwin-amd64 /opt/certscanner/certscanner  # Intel
sudo chmod +x /opt/certscanner/certscanner
  1. Test installation: /opt/certscanner/certscanner -version
  2. Verify binary permissions allow Datadog agent execution

3.2 Remote Deployment Options

Deploy TYCHON files remotely across multiple servers:
Option A: Ansible Deployment
# ansible-tychon-datadog.yml
---
- hosts: datadog_agents
  become: yes
  vars:
    certscanner_version: "1.0.42"
    dd_api_key: "{{ vault_dd_api_key }}"
  tasks:
  - name: Download TYCHON binary
    get_url:
      url: "https://your-r2-bucket.com/certscanner-{{ ansible_system | lower }}-{{ ansible_architecture }}"
      dest: "/opt/certscanner/certscanner"
      mode: '0755'
      owner: dd-agent
      group: dd-agent
  
  - name: Deploy custom check
    copy:
      content: |
        {{ lookup('file', 'certscanner.py') }}
      dest: "/etc/datadog-agent/checks.d/certscanner.py"
      owner: dd-agent
      group: dd-agent
      mode: '0644'
  
  - name: Deploy configuration
    template:
      src: certscanner.yaml.j2
      dest: "/etc/datadog-agent/conf.d/certscanner.yaml"
      owner: dd-agent
      group: dd-agent
    notify: restart datadog-agent
  
  handlers:
  - name: restart datadog-agent
    systemd:
      name: datadog-agent
      state: restarted
Option B: Terraform Deployment
# main.tf - Deploy via Terraform
resource "local_file" "certscanner_check" {
  for_each = toset(var.datadog_hosts)
  
  content = templatefile("${path.module}/templates/certscanner.py", {
    certscanner_path = "/opt/certscanner/certscanner"
  })
  
  provisioner "remote-exec" {
    connection {
      type = "ssh"
      host = each.value
      user = "ubuntu"
    }
    
    inline = [
      "sudo mkdir -p /etc/datadog-agent/checks.d",
      "sudo tee /etc/datadog-agent/checks.d/certscanner.py > /dev/null",
      "sudo chown dd-agent:dd-agent /etc/datadog-agent/checks.d/certscanner.py",
      "sudo systemctl restart datadog-agent"
    ]
  }
}
Option C: SaltStack Deployment
# salt/certscanner/init.sls
certscanner_binary:
  file.managed:
    - name: /opt/certscanner/certscanner
    - source: salt://certscanner/files/certscanner-{{ grains['kernel'] | lower }}-{{ grains['cpuarch'] }}
    - mode: 755
    - user: dd-agent
    - group: dd-agent
    - makedirs: True

certscanner_check:
  file.managed:
    - name: /etc/datadog-agent/checks.d/certscanner.py
    - source: salt://certscanner/files/certscanner.py
    - user: dd-agent
    - group: dd-agent
    - mode: 644

certscanner_config:
  file.managed:
    - name: /etc/datadog-agent/conf.d/certscanner.yaml  
    - source: salt://certscanner/templates/certscanner.yaml
    - template: jinja
    - user: dd-agent
    - group: dd-agent
    - require:
      - file: certscanner_check
      
datadog-agent:
  service.running:
    - reload: True
    - watch:
      - file: certscanner_check
      - file: certscanner_config
Option D: Chef Deployment
# recipes/default.rb
remote_file '/opt/certscanner/certscanner' do
  source "https://your-r2-bucket.com/certscanner-#{node['kernel']['name'].downcase}-#{node['kernel']['machine']}"
  owner 'dd-agent'
  group 'dd-agent'
  mode '0755'
  action :create
end

cookbook_file '/etc/datadog-agent/checks.d/certscanner.py' do
  source 'certscanner.py'
  owner 'dd-agent'
  group 'dd-agent'
  mode '0644'
  notifies :restart, 'service[datadog-agent]', :delayed
end

template '/etc/datadog-agent/conf.d/certscanner.yaml' do
  source 'certscanner.yaml.erb'
  owner 'dd-agent'
  group 'dd-agent'
  variables({
    scan_options: node['certscanner']['scan_options'],
    tags: node['certscanner']['tags']
  })
  notifies :restart, 'service[datadog-agent]', :delayed
end

3.3 Create Working Directories

Set up necessary directories for TYCHON operation:
# Create directories for TYCHON operation
sudo mkdir -p /opt/certscanner
sudo mkdir -p /var/log/certscanner  
sudo mkdir -p /etc/certscanner

# Set proper permissions
sudo chown -R dd-agent:dd-agent /opt/certscanner /var/log/certscanner
sudo chmod 755 /opt/certscanner /var/log/certscanner
sudo chmod 644 /etc/certscanner

# For Windows (run as Administrator)
# mkdir "C:\Program Files\certscanner"
# mkdir "C:\ProgramData\certscanner\logs"
# mkdir "C:\ProgramData\certscanner\config"

Step 4: Deploy Custom Agent Check (Recommended Method)

4.1 Create Custom Agent Check File

Create the Python check file that will execute TYCHON scans:
  1. Create the custom check file (path varies by platform):
  2. Linux/macOS: /etc/datadog-agent/checks.d/certscanner.py
  3. Windows: C:\ProgramData\Datadog\checks.d\certscanner.py
  4. Copy the following Python code into this file:

Python-based custom check for the Datadog Agent to execute TYCHON Quantum Readiness:

# /etc/datadog-agent/checks.d/certscanner.py
# Datadog Agent custom check for TYCHON Quantum Readiness execution

import json
import subprocess
import tempfile
import os
from datadog_checks.base import AgentCheck

class TYCHON Quantum ReadinessCheck(AgentCheck):
    def __init__(self, name, init_config, instances):
        super(TYCHON Quantum ReadinessCheck, self).__init__(name, init_config, instances)
        self.certscanner_path = self.instance.get('certscanner_path', '/opt/certscanner/certscanner')
        self.scan_mode = self.instance.get('scan_mode', 'local')
        self.scan_options = self.instance.get('scan_options', ['-scanfilesystem', '-scanconnected'])
        self.tags = self.instance.get('tags', ['datadog-agent', 'crypto-monitoring'])

    def check(self, instance):
        """Execute TYCHON Quantum Readiness and submit metrics/logs to Datadog"""
        
        try:
            # Create temporary output file
            with tempfile.NamedTemporaryFile(mode='w+', suffix='.ndjson', delete=False) as temp_file:
                output_path = temp_file.name

            # Build TYCHON Quantum Readiness command
            cmd = [
                self.certscanner_path,
                '-mode', self.scan_mode,
                '-outputformat', 'flatndjson',
                '-output', output_path,
                '-tags', ','.join(self.tags)
            ] + self.scan_options

            # Execute TYCHON Quantum Readiness
            self.log.info(f"Executing TYCHON Quantum Readiness: {' '.join(cmd)}")
            result = subprocess.run(cmd, capture_output=True, text=True, timeout=300)

            if result.returncode == 0:
                self.log.info("TYCHON Quantum Readiness execution completed successfully")
                
                # Process results and submit to Datadog
                self._process_scan_results(output_path)
                
                # Submit success metric
                self.gauge('certscanner.execution.status', 1, tags=self.tags + ['status:success'])
                
            else:
                self.log.error(f"TYCHON Quantum Readiness failed with exit code {result.returncode}: {result.stderr}")
                self.gauge('certscanner.execution.status', 0, tags=self.tags + ['status:failed'])
                
        except subprocess.TimeoutExpired:
            self.log.error("TYCHON Quantum Readiness execution timed out")
            self.gauge('certscanner.execution.status', 0, tags=self.tags + ['status:timeout'])
            
        except Exception as e:
            self.log.error(f"TYCHON Quantum Readiness check failed: {str(e)}")
            self.gauge('certscanner.execution.status', 0, tags=self.tags + ['status:error'])
            
        finally:
            # Cleanup temporary files
            if 'output_path' in locals() and os.path.exists(output_path):
                os.unlink(output_path)

    def _process_scan_results(self, results_file):
        """Process TYCHON Quantum Readiness results and submit metrics/logs"""
        
        crypto_assets = 0
        pqc_vulnerable = 0
        certificates_expiring = 0
        cipher_security_levels = {'high': 0, 'medium': 0, 'low': 0}
        
        try:
            with open(results_file, 'r') as f:
                for line in f:
                    if not line.strip():
                        continue
                        
                    try:
                        result = json.loads(line)
                        crypto_assets += 1
                        
                        # Track PQC vulnerabilities
                        if result.get('tychon', {}).get('pqc_vulnerable', False):
                            pqc_vulnerable += 1
                            
                        # Track certificate expiration
                        if 'certificate' in result and 'not_after' in result['certificate']:
                            # Check if expires within 90 days (simplified)
                            certificates_expiring += 1  # Would need proper date parsing
                            
                        # Track cipher security levels
                        if 'cipher' in result and 'intel' in result['cipher']:
                            security_level = result['cipher']['intel'].get('security_level', 'unknown')
                            if security_level in cipher_security_levels:
                                cipher_security_levels[security_level] += 1
                        
                        # Submit individual asset as log entry
                        self._submit_log_entry(result)
                        
                    except json.JSONDecodeError:
                        self.log.warning(f"Failed to parse JSON line: {line[:100]}...")
                        continue
                        
            # Submit aggregate metrics
            self.gauge('certscanner.assets.total', crypto_assets, tags=self.tags)
            self.gauge('certscanner.assets.pqc_vulnerable', pqc_vulnerable, tags=self.tags)
            self.gauge('certscanner.certificates.expiring_soon', certificates_expiring, tags=self.tags)
            
            for level, count in cipher_security_levels.items():
                self.gauge('certscanner.ciphers.by_security_level', count, 
                          tags=self.tags + [f'security_level:{level}'])
                          
            self.log.info(f"Processed {crypto_assets} crypto assets, {pqc_vulnerable} PQC-vulnerable")
            
        except Exception as e:
            self.log.error(f"Failed to process scan results: {str(e)}")

    def _submit_log_entry(self, scan_result):
        """Submit individual scan result as structured log to Datadog"""
        
        # Format for Datadog log ingestion
        log_entry = {
            'timestamp': scan_result.get('@timestamp'),
            'source': 'certscanner',
            'service': 'crypto-monitoring',
            'host': scan_result.get('host', self.hostname),
            'ddsource': 'certscanner-agent',
            'ddtags': ','.join(self.tags),
            'crypto_asset': scan_result
        }
        
        # Submit via Datadog logging
        self.log.info(json.dumps(log_entry), extra={'dd.trace_id': self.trace_id})

4.2 Create Agent Configuration File

Create the configuration file to run TYCHON scans:
  1. Create the configuration file (path varies by platform):
  2. Linux/macOS: /etc/datadog-agent/conf.d/certscanner.yaml
  3. Windows: C:\ProgramData\Datadog\conf.d\certscanner.yaml
  4. Copy the following YAML configuration into this file:

Configure the Datadog Agent to run the TYCHON Quantum Readiness custom check:

# /etc/datadog-agent/conf.d/certscanner.yaml
# Datadog Agent configuration for TYCHON Quantum Readiness check

init_config:
  # Global configuration for all instances
  default_timeout: 300

instances:
  # Production crypto monitoring
  - certscanner_path: '/opt/certscanner/certscanner'
    scan_mode: 'local'
    scan_options:
      - '-scanfilesystem'
      - '-scanmemory' 
      - '-scanconnected'
      - '-scanoutlookarchives'
    tags:
      - 'environment:production'
      - 'team:security'
      - 'scan_type:comprehensive'
    min_collection_interval: 3600  # Run hourly

  # Quick connectivity monitoring  
  - certscanner_path: '/opt/certscanner/certscanner'
    scan_mode: 'local'
    scan_options:
      - '-scanconnected'
      - '-quickscan'
    tags:
      - 'environment:production'
      - 'scan_type:connectivity'
    min_collection_interval: 300   # Run every 5 minutes
    
  # Weekly comprehensive audit
  - certscanner_path: '/opt/certscanner/certscanner' 
    scan_mode: 'local'
    scan_options:
      - '-scanfilesystem'
      - '-scanmemory'
      - '-scanconnected'
      - '-scanoutlookarchives'
      - '-cipherintelcloud'
    tags:
      - 'environment:production'
      - 'scan_type:audit'
      - 'compliance:weekly'
    min_collection_interval: 604800  # Run weekly

4.3 Deploy and Test the Custom Check

Deploy the custom check and verify it's working:
  1. Set correct file permissions for the check files:
# Linux/macOS
sudo chown dd-agent:dd-agent /etc/datadog-agent/checks.d/certscanner.py
sudo chown dd-agent:dd-agent /etc/datadog-agent/conf.d/certscanner.yaml
sudo chmod 644 /etc/datadog-agent/checks.d/certscanner.py
sudo chmod 644 /etc/datadog-agent/conf.d/certscanner.yaml

# Windows (run as Administrator) 
icacls "C:\ProgramData\Datadog\checks.d\certscanner.py" /grant "LOCAL SERVICE:F"
icacls "C:\ProgramData\Datadog\conf.d\certscanner.yaml" /grant "LOCAL SERVICE:F"
  1. Restart the Datadog Agent to load the new check:
# Linux
sudo systemctl restart datadog-agent

# macOS  
sudo launchctl stop com.datadoghq.agent
sudo launchctl start com.datadoghq.agent

# Windows
net stop DatadogAgent && net start DatadogAgent
  1. Verify the custom check is loaded and running:
# Check if certscanner check is loaded
sudo datadog-agent check certscanner

# View agent status to see all loaded checks  
sudo datadog-agent status

# Monitor agent logs for check execution
sudo tail -f /var/log/datadog/agent.log | grep certscanner
  1. Test manual execution to verify TYCHON scanner works:
# Test TYCHON scanner binary directly
sudo -u dd-agent /opt/certscanner/certscanner -version
sudo -u dd-agent /opt/certscanner/certscanner -mode local -quickscan
  1. Check Datadog dashboard for incoming metrics (may take 5-10 minutes for first data)

Step 5: Create Crypto Security Dashboard

5.1 Create New Dashboard

Create your crypto security monitoring dashboard:
  1. In Datadog, go to Dashboards → Dashboard List
  2. Click "+ New Dashboard"
  3. Choose "Dashboard" (not Screenboard)
  4. Name it "TYCHON Crypto Security Monitoring"
  5. Add a description: "Real-time cryptographic asset monitoring and PQC readiness tracking"
  6. Click "Create Dashboard"

5.2 Add Essential Widgets

Add these key widgets to monitor your crypto infrastructure:
  1. Total Crypto Assets Widget:
    • • Click "+ Add Widget""Query Value"
    • • Title: "Total Crypto Assets Discovered"
    • • Metric: sum:certscanner.assets.total{*}
    • • Time frame: "Past 1 Hour"
    • • Custom unit: "assets"
  2. PQC Vulnerability Rate Widget:
    • • Click "+ Add Widget""Query Value"
    • • Title: "PQC Vulnerability Percentage"
    • • Metric: (sum:certscanner.assets.pqc_vulnerable{*} / sum:certscanner.assets.total{*}) * 100
    • • Custom unit: "%"
    • • Set alert threshold at 25% (warning) and 50% (critical)
  3. Scanner Execution Health:
    • • Click "+ Add Widget""Timeseries"
    • • Title: "Scanner Execution Status by Host"
    • • Metric: avg:certscanner.execution.status{*} by {host}
    • • Display as: "Line graph"
    • • Y-axis: 0 to 1 (0=failed, 1=success)

5.3 Test Dashboard Data Flow

Verify data is flowing into your dashboard:
  1. Wait 10-15 minutes for the first scheduled check execution
  2. Refresh your dashboard and look for data in the widgets
  3. If no data appears, check agent logs: sudo tail -f /var/log/datadog/agent.log
  4. Force a manual check execution: sudo datadog-agent check certscanner
  5. Go to Metrics → Explorer and search for "certscanner" to verify metrics are arriving
  6. Go to Logs → Live Tail and search for source:certscanner
Common Issues:
# Check permissions
ls -la /etc/datadog-agent/checks.d/certscanner.py
ls -la /etc/datadog-agent/conf.d/certscanner.yaml

# Verify TYCHON binary is executable by dd-agent
sudo -u dd-agent /opt/certscanner/certscanner -version

# Check for Python syntax errors in custom check
python3 /etc/datadog-agent/checks.d/certscanner.py

Alternative Method: Process Monitoring via Cron

2.1 Process-Based Execution

Use Datadog Process monitoring to track and execute TYCHON Quantum Readiness via cron/scheduled tasks:

# Create scheduled TYCHON Quantum Readiness execution script
# /opt/certscanner/datadog-certscanner-runner.sh

#!/bin/bash
# Datadog-monitored TYCHON Quantum Readiness execution

CERTSCANNER_PATH="/opt/certscanner/certscanner"
OUTPUT_DIR="/var/log/certscanner"
DATADOG_API_KEY="${DD_API_KEY}"
DATADOG_SITE="${DD_SITE:-datadoghq.com}"

# Create output directory
mkdir -p "$OUTPUT_DIR"

# Generate timestamped output file
TIMESTAMP=$(date +"%Y%m%d-%H%M%S")
OUTPUT_FILE="$OUTPUT_DIR/crypto-scan-$TIMESTAMP.ndjson"
METRICS_FILE="$OUTPUT_DIR/crypto-metrics-$TIMESTAMP.json"

echo "🔄 Starting Datadog-monitored crypto scan..."

# Execute TYCHON Quantum Readiness with comprehensive options
"$CERTSCANNER_PATH" -mode local -scanfilesystem -scanmemory -scanconnected \
    -outputformat flatndjson -output "$OUTPUT_FILE" \
    -tags "datadog-monitored,scheduled-scan,$(hostname)"

EXIT_CODE=$?

if [ $EXIT_CODE -eq 0 ]; then
    echo "✅ TYCHON Quantum Readiness execution completed successfully"
    
    # Process results for Datadog metrics
    ASSET_COUNT=$(wc -l < "$OUTPUT_FILE")
    PQC_VULNERABLE=$(grep -c '"pqc_vulnerable":true' "$OUTPUT_FILE")
    HIGH_SECURITY=$(grep -c '"security_level":"high"' "$OUTPUT_FILE")
    
    # Create metrics JSON for Datadog submission
    cat > "$METRICS_FILE" << EOF
{
  "series": [
    {
      "metric": "certscanner.assets.discovered",
      "points": [[$(date +%s), $ASSET_COUNT]],
      "host": "$(hostname)",
      "tags": ["source:datadog-cron", "scan_type:comprehensive"]
    },
    {
      "metric": "certscanner.vulnerabilities.pqc_count", 
      "points": [[$(date +%s), $PQC_VULNERABLE]],
      "host": "$(hostname)",
      "tags": ["source:datadog-cron", "vulnerability_type:pqc"]
    },
    {
      "metric": "certscanner.ciphers.high_security_count",
      "points": [[$(date +%s), $HIGH_SECURITY]], 
      "host": "$(hostname)",
      "tags": ["source:datadog-cron", "security_level:high"]
    }
  ]
}
EOF

    # Submit metrics to Datadog
    curl -X POST "https://api.$DATADOG_SITE/api/v1/series" \
        -H "Content-Type: application/json" \
        -H "DD-API-KEY: $DATADOG_API_KEY" \
        -d @"$METRICS_FILE"
    
    # Submit logs to Datadog  
    while IFS= read -r line; do
        echo "$line" | \
        curl -X POST "https://http-intake.logs.$DATADOG_SITE/v1/input/$DATADOG_API_KEY" \
            -H "Content-Type: application/json" \
            -d @-
    done < "$OUTPUT_FILE"
    
    echo "📊 Metrics and logs submitted to Datadog"
    
else
    echo "❌ TYCHON Quantum Readiness failed with exit code: $EXIT_CODE"
    
    # Submit failure metric
    curl -X POST "https://api.$DATADOG_SITE/api/v1/series" \
        -H "Content-Type: application/json" \
        -H "DD-API-KEY: $DATADOG_API_KEY" \
        -d '{
            "series": [{
                "metric": "certscanner.execution.failures",
                "points": [['$(date +%s)', 1]],
                "host": "'$(hostname)'",
                "tags": ["source:datadog-cron", "error_code:'$EXIT_CODE'"]
            }]
        }'
fi

# Cleanup old files (keep last 7 days)
find "$OUTPUT_DIR" -name "crypto-*" -type f -mtime +7 -delete

echo "🎯 Datadog TYCHON Quantum Readiness execution completed"

2.2 Cron Configuration

Schedule TYCHON Quantum Readiness execution with cron, monitored by Datadog Process check:

# Add to crontab for automated execution
# crontab -e

# Daily comprehensive crypto scan at 2 AM
0 2 * * * /opt/certscanner/datadog-certscanner-runner.sh comprehensive

# Hourly quick connectivity scan
0 * * * * /opt/certscanner/datadog-certscanner-runner.sh quick

# Weekly audit scan on Sundays at 1 AM
0 1 * * 0 /opt/certscanner/datadog-certscanner-runner.sh audit

Process Monitoring Configuration

# /etc/datadog-agent/conf.d/process.yaml
# Monitor TYCHON Quantum Readiness process execution

init_config:

instances:
  - name: certscanner
    search_string: ['certscanner.*-mode local']
    exact_match: false
    tags:
      - 'process_type:security_scanner'
      - 'team:security'
    thresholds:
      critical: [1, 1]  # Alert if not exactly 1 process running during scan window

Step 6: Configure Security Alerts

6.1 Create PQC Vulnerability Alert

Set up critical alerts for post-quantum cryptography vulnerabilities:
  1. Go to Monitors → New Monitor
  2. Choose "Metric" monitor type
  3. Set detection method to "Threshold Alert"
  4. Configure the query: sum:certscanner.assets.pqc_vulnerable{*}
  5. Set alert conditions:
    • Warning threshold: Above 5
    • Critical threshold: Above 10
    • Evaluation window: Last 15 minutes
  6. Add notification message:
  7. 🚨 **PQC Vulnerability Detected**
    {{value}} crypto assets vulnerable to quantum attacks found on {{host.name}}.
    
    **Action Required:** Review and upgrade vulnerable cryptographic implementations.
    
    **Dashboard:** [TYCHON Crypto Security Monitoring](link-to-your-dashboard)
    @security-team @crypto-team
  8. Save the monitor as "TYCHON - PQC Vulnerabilities Detected"

6.2 Create Scanner Health Alert

Monitor TYCHON scanner execution health:
  1. Create another "Metric" monitor
  2. Query: avg:certscanner.execution.status{*} by {host}
  3. Set alert conditions:
    • Warning threshold: Below 0.8
    • Critical threshold: Below 0.5
    • Evaluation window: Last 1 hour
  4. Set up notification to DevOps/Security teams
  5. Save as "TYCHON - Scanner Execution Health"

Advanced Method: Datadog API Integration

3.1 Direct API Submission

Submit TYCHON Quantum Readiness results directly to Datadog APIs from any execution environment:

# datadog_certscanner_integration.py
# Direct Datadog API integration for TYCHON Quantum Readiness results

import json
import requests
import subprocess
import tempfile
from datetime import datetime, timezone
from datadog_api_client import Configuration, ApiClient
from datadog_api_client.v1.api.metrics_api import MetricsApi
from datadog_api_client.v1.api.logs_api import LogsApi
from datadog_api_client.v1.model.metrics_payload import MetricsPayload
from datadog_api_client.v1.model.series import Series
from datadog_api_client.v1.model.point import Point

class DatadogTYCHON Quantum ReadinessIntegration:
    def __init__(self, api_key, app_key, site="datadoghq.com"):
        configuration = Configuration()
        configuration.api_key["apiKeyAuth"] = api_key
        configuration.api_key["appKeyAuth"] = app_key
        configuration.server_variables["site"] = site
        
        self.api_client = ApiClient(configuration)
        self.metrics_api = MetricsApi(self.api_client)
        self.logs_api = LogsApi(self.api_client)
        
    def execute_and_submit_scan(self, certscanner_path, scan_options=None, tags=None):
        """Execute TYCHON Quantum Readiness and submit results to Datadog"""
        
        if scan_options is None:
            scan_options = ['-mode', 'local', '-scanfilesystem', '-scanconnected']
        if tags is None:
            tags = ['datadog-api', 'crypto-monitoring']
            
        timestamp = datetime.now(timezone.utc)
        
        try:
            # Create temporary output file
            with tempfile.NamedTemporaryFile(mode='w+', suffix='.ndjson', delete=False) as temp_file:
                output_path = temp_file.name
            
            # Execute TYCHON Quantum Readiness
            cmd = [certscanner_path] + scan_options + ['-outputformat', 'flatndjson', '-output', output_path]
            result = subprocess.run(cmd, capture_output=True, text=True, timeout=600)
            
            if result.returncode == 0:
                print("✅ TYCHON Quantum Readiness execution completed")
                
                # Process and submit results
                metrics_data = self._process_results_for_metrics(output_path, timestamp, tags)
                logs_data = self._process_results_for_logs(output_path, tags)
                
                # Submit metrics
                self.metrics_api.submit_metrics(body=MetricsPayload(series=metrics_data))
                print(f"📊 Submitted {len(metrics_data)} metrics to Datadog")
                
                # Submit logs (batch submission)
                for log_batch in self._batch_logs(logs_data, batch_size=100):
                    self.logs_api.submit_log(body=log_batch)
                print(f"📝 Submitted {len(logs_data)} log entries to Datadog")
                
                return True
                
            else:
                print(f"❌ TYCHON Quantum Readiness failed: {result.stderr}")
                
                # Submit failure metric
                failure_metric = Series(
                    metric="certscanner.execution.failures",
                    points=[Point([timestamp.timestamp(), 1])],
                    tags=tags + [f"error_code:{result.returncode}"]
                )
                self.metrics_api.submit_metrics(body=MetricsPayload(series=[failure_metric]))
                return False
                
        except Exception as e:
            print(f"❌ Integration failed: {str(e)}")
            return False
        finally:
            if 'output_path' in locals():
                import os
                if os.path.exists(output_path):
                    os.unlink(output_path)

    def _process_results_for_metrics(self, results_file, timestamp, base_tags):
        """Convert scan results to Datadog metrics"""
        
        metrics = []
        crypto_assets = 0
        pqc_vulnerable = 0
        security_levels = {'high': 0, 'medium': 0, 'low': 0}
        
        with open(results_file, 'r') as f:
            for line in f:
                if not line.strip():
                    continue
                try:
                    result = json.loads(line)
                    crypto_assets += 1
                    
                    if result.get('tychon', {}).get('pqc_vulnerable', False):
                        pqc_vulnerable += 1
                        
                    security_level = result.get('cipher', {}).get('intel', {}).get('security_level')
                    if security_level in security_levels:
                        security_levels[security_level] += 1
                        
                except json.JSONDecodeError:
                    continue
        
        # Create metric series
        metrics.append(Series(
            metric="certscanner.assets.total",
            points=[Point([timestamp.timestamp(), crypto_assets])],
            tags=base_tags
        ))
        
        metrics.append(Series(
            metric="certscanner.vulnerabilities.pqc_total", 
            points=[Point([timestamp.timestamp(), pqc_vulnerable])],
            tags=base_tags
        ))
        
        for level, count in security_levels.items():
            metrics.append(Series(
                metric="certscanner.ciphers.security_distribution",
                points=[Point([timestamp.timestamp(), count])],
                tags=base_tags + [f"security_level:{level}"]
            ))
            
        return metrics

# Example usage
if __name__ == "__main__":
    integration = DatadogTYCHON Quantum ReadinessIntegration(
        api_key="your-datadog-api-key",
        app_key="your-datadog-app-key"
    )
    
    integration.execute_and_submit_scan(
        certscanner_path="/opt/certscanner/certscanner",
        scan_options=['-mode', 'local', '-scanfilesystem', '-scanconnected'],
        tags=['environment:production', 'team:security']
    )

Advanced Dashboards & Templates

4.1 Executive Crypto Security Dashboard

Create comprehensive crypto security dashboard for executive reporting:

{
  "dashboard_title": "Cryptographic Security Posture",
  "description": "Enterprise-wide crypto asset monitoring via TYCHON Quantum Readiness",
  "widgets": [
    {
      "title": "Crypto Asset Discovery Overview",
      "type": "query_value",
      "requests": [
        {
          "q": "sum:certscanner.assets.total{*}",
          "aggregator": "last"
        }
      ],
      "custom_unit": "assets"
    },
    {
      "title": "PQC Vulnerability Rate",
      "type": "query_value", 
      "requests": [
        {
          "q": "(sum:certscanner.vulnerabilities.pqc_total{*} / sum:certscanner.assets.total{*}) * 100",
          "aggregator": "last"
        }
      ],
      "custom_unit": "%"
    },
    {
      "title": "Crypto Assets by Security Level",
      "type": "sunburst",
      "requests": [
        {
          "q": "sum:certscanner.ciphers.security_distribution{*} by {security_level}",
          "style": {"palette": "green_to_orange"}
        }
      ]
    },
    {
      "title": "Certificate Expiration Timeline", 
      "type": "timeseries",
      "requests": [
        {
          "q": "sum:certscanner.certificates.expiring_soon{*} by {host}",
          "display_type": "area"
        }
      ]
    },
    {
      "title": "TYCHON Quantum Readiness Execution Health",
      "type": "check_status",
      "requests": [
        {
          "q": "avg:certscanner.execution.status{*} by {host}",
          "thresholds": {"ok": 0.9, "warning": 0.5}
        }
      ]
    },
    {
      "title": "Top PQC-Vulnerable Hosts",
      "type": "toplist", 
      "requests": [
        {
          "q": "top(sum:certscanner.vulnerabilities.pqc_total{*} by {host}, 10, 'last', 'desc')"
        }
      ]
    }
  ],
  "layout_type": "ordered"
}

4.2 Security Operations Dashboard

Operational dashboard for security teams monitoring crypto infrastructure:

{
  "dashboard_title": "Crypto Security Operations",
  "description": "Real-time crypto security monitoring and incident response",
  "widgets": [
    {
      "title": "Scan Execution Status",
      "type": "hostmap",
      "requests": [
        {
          "q": "avg:certscanner.execution.status{*} by {host}",
          "fill": ["certscanner.assets.total"]
        }
      ]
    },
    {
      "title": "Crypto Asset Discovery Rate",
      "type": "timeseries",
      "requests": [
        {
          "q": "per_minute(sum:certscanner.assets.discovered{*})",
          "display_type": "line"
        }
      ]
    },
    {
      "title": "Security Level Distribution",
      "type": "distribution",
      "requests": [
        {
          "q": "sum:certscanner.ciphers.security_distribution{*} by {security_level}"
        }
      ]
    },
    {
      "title": "Recent Crypto Anomalies",
      "type": "log_stream",
      "requests": [
        {
          "query": "source:certscanner @crypto_asset.tychon.pqc_vulnerable:true",
          "sort": {"column": "timestamp", "order": "desc"},
          "columns": ["host", "@crypto_asset.cipher.name", "@crypto_asset.certificate.subject.common_name"]
        }
      ]
    }
  ]
}

Advanced Alerting & Monitoring

5.1 Critical Crypto Alerts

Configure intelligent alerts for critical cryptographic security events:

{
  "monitor_type": "metric alert",
  "name": "High PQC Vulnerability Rate Detected",
  "message": "@slack-security-alerts @pagerduty-crypto-team High concentration of PQC-vulnerable crypto assets detected on {{host.name}}. {{value}} vulnerable assets found.",
  "query": "avg(last_5m):( sum:certscanner.vulnerabilities.pqc_total{*} by {host} / sum:certscanner.assets.total{*} by {host} ) * 100 > 50",
  "options": {
    "thresholds": {
      "critical": 50,
      "warning": 25  
    },
    "notify_audit": true,
    "include_tags": true,
    "new_host_delay": 300
  }
}

{
  "monitor_type": "log alert",
  "name": "Weak Cipher Suite Detected", 
  "message": "@security-team Weak cipher suite detected: {{@crypto_asset.cipher.name}} on host {{@host}}. Security level: {{@crypto_asset.cipher.intel.security_level}}",
  "query": "logs(\"source:certscanner @crypto_asset.cipher.intel.security_level:low\").index(\"*\").rollup(\"count\").last(\"15m\") > 0",
  "options": {
    "enable_logs_sample": true,
    "groupby_simple_monitor": true
  }
}

{
  "monitor_type": "composite",
  "name": "TYCHON Quantum Readiness Execution Health Check",
  "message": "TYCHON Quantum Readiness execution issues detected across multiple hosts. Check agent logs and binary availability.",
  "query": "avg:certscanner.execution.status{*} by {host} < 0.8",
  "options": {
    "thresholds": {
      "critical": 0.5,
      "warning": 0.8
    }
  }
}

5.2 Anomaly Detection

Use Datadog's ML-powered anomaly detection for crypto asset patterns:

{
  "monitor_type": "anomaly",
  "name": "Unusual Crypto Asset Discovery Pattern",
  "message": "@security-analysts Anomalous crypto asset discovery pattern detected. Expected {{threshold}} assets, found {{value}} on {{host.name}}.",
  "query": "anomalies(avg:certscanner.assets.discovered{*} by {host}, 'agile', 2, direction='both', alert_window='last_15m', interval=300, count_default_zero='true')",
  "options": {
    "thresholds": {
      "critical": 2,
      "critical_recovery": 1.5
    },
    "notify_audit": false
  }
}

{
  "monitor_type": "forecast", 
  "name": "Certificate Expiration Forecast Alert",
  "message": "Certificate expiration spike predicted for next week. Estimated {{value}} certificates expiring. Plan renewal activities.",
  "query": "forecast(sum:certscanner.certificates.expiring_soon{*}, 'linear', 1, interval=3600, history='1w')",
  "options": {
    "thresholds": {
      "critical": 10,
      "warning": 5
    }
  }
}

Advanced Log Analysis & Queries

6.1 Security Investigation Queries

-- Find hosts with PQC-vulnerable crypto implementations
source:certscanner @crypto_asset.tychon.pqc_vulnerable:true
| stats count by @host, @crypto_asset.cipher.name 
| sort -count

-- Certificate authority analysis across infrastructure
source:certscanner @crypto_asset.certificate.issuer.common_name:*
| stats count by @crypto_asset.certificate.issuer.common_name
| where count < 5  -- Identify uncommon/suspicious CAs

-- Memory-based crypto library discovery
source:certscanner @crypto_asset.library.name:*
| stats latest(@timestamp) as last_seen, 
        count as occurrences 
  by @host, @crypto_asset.library.name, @crypto_asset.library.company_name
| where @crypto_asset.library.company_name != "Microsoft Corporation"
| sort -occurrences

-- Crypto asset timeline for incident correlation  
source:certscanner @timestamp:[now-1h TO now]
| timeseries @crypto_asset.scan.timestamp by @crypto_asset.tychon.type
| overlay events("source:datadog priority:all")

-- Certificate expiration risk assessment
source:certscanner @crypto_asset.certificate.not_after:*
| eval days_until_expiry = (@crypto_asset.certificate.not_after - now()) / 86400000
| where days_until_expiry > 0 and days_until_expiry < 90
| stats count by @host, @crypto_asset.certificate.subject.common_name
| sort days_until_expiry

6.2 Compliance Reporting Queries

-- PCI-DSS crypto compliance check
source:certscanner (@tags:pci-dss OR @tags:payment-processing)
| stats 
    countif(@crypto_asset.cipher.intel.security_level = "high") as compliant_ciphers,
    countif(@crypto_asset.cipher.intel.security_level != "high") as non_compliant_ciphers,
    count as total_crypto_assets
  by @host
| eval compliance_rate = (compliant_ciphers / total_crypto_assets) * 100
| where compliance_rate < 95  -- Flag non-compliant hosts

-- SOX crypto asset inventory  
source:certscanner @tags:financial-systems
| stats 
    latest(@crypto_asset.certificate.subject.common_name) as certificate,
    latest(@crypto_asset.certificate.issuer.common_name) as issuer,
    latest(@crypto_asset.certificate.not_after) as expiration
  by @host, @crypto_asset.certificate.fingerprint_sha256
| sort @host

-- NIST Cybersecurity Framework alignment
source:certscanner
| eval csf_category = case(
    @crypto_asset.tychon.pqc_vulnerable = true, "IDENTIFY: Asset Vulnerability",
    @crypto_asset.cipher.intel.security_level = "low", "PROTECT: Cipher Weakness", 
    @crypto_asset.certificate.not_after < now() + 30d, "PROTECT: Certificate Expiration",
    1=1, "PROTECT: Crypto Asset Inventory"
  )
| stats count by csf_category, @host
| sort -count

Advanced APM & Distributed Tracing

7.1 Application Crypto Correlation

Correlate TYCHON Quantum Readiness findings with application performance and security traces:

# Enhanced TYCHON Quantum Readiness with APM tracing
from datadog import initialize, statsd
from ddtrace import tracer
import subprocess
import json

# Initialize Datadog
initialize(api_key='your-api-key', app_key='your-app-key')

@tracer.wrap(service="crypto-scanner", resource="local-scan")
def execute_certscanner_with_tracing(scan_options, tags):
    """Execute TYCHON Quantum Readiness with distributed tracing"""
    
    with tracer.trace("certscanner.execution", service="crypto-scanner") as span:
        span.set_tag("scan.mode", "local")
        span.set_tag("scan.host", os.uname().nodename)
        
        try:
            # Execute TYCHON Quantum Readiness
            cmd = ['/opt/certscanner/certscanner'] + scan_options
            
            with tracer.trace("certscanner.binary.execution"):
                result = subprocess.run(cmd, capture_output=True, text=True, timeout=600)
            
            if result.returncode == 0:
                span.set_tag("execution.status", "success")
                
                # Process results with tracing
                with tracer.trace("certscanner.results.processing"):
                    crypto_metrics = process_scan_results(output_path)
                
                # Submit custom metrics
                statsd.gauge('certscanner.assets.total', crypto_metrics['total_assets'], tags=tags)
                statsd.gauge('certscanner.vulnerabilities.pqc', crypto_metrics['pqc_vulnerable'], tags=tags)
                
                span.set_tag("assets.discovered", crypto_metrics['total_assets'])
                span.set_tag("vulnerabilities.pqc", crypto_metrics['pqc_vulnerable'])
                
                return crypto_metrics
                
            else:
                span.set_tag("execution.status", "failed")
                span.set_tag("error.code", result.returncode) 
                statsd.increment('certscanner.execution.failures', tags=tags + [f'error_code:{result.returncode}'])
                raise Exception(f"TYCHON Quantum Readiness failed: {result.stderr}")
                
        except Exception as e:
            span.set_tag("error", True)
            span.set_tag("error.message", str(e))
            raise

# Correlate with application traces
@tracer.wrap(service="web-application", resource="tls-handshake")
def correlate_app_crypto_usage():
    """Correlate application TLS usage with TYCHON Quantum Readiness findings"""
    
    # This would run during application TLS connections
    # Correlating runtime crypto usage with static crypto discovery
    pass

Advanced SLOs & Performance Monitoring

8.1 Crypto Security SLOs

Define Service Level Objectives for cryptographic security posture:

{
  "slo_name": "Crypto Security Posture SLO",
  "description": "Maintain high cryptographic security across infrastructure", 
  "sli_specification": {
    "time_window": "30d",
    "target": 99.5,
    "warning": 99.0
  },
  "slis": [
    {
      "name": "PQC Readiness Rate",
      "query": "(sum:certscanner.assets.total{*} - sum:certscanner.vulnerabilities.pqc_total{*}) / sum:certscanner.assets.total{*} * 100",
      "target": "> 80%",
      "description": "Percentage of crypto assets that are post-quantum ready"
    },
    {
      "name": "Certificate Validity Rate", 
      "query": "(sum:certscanner.certificates.total{*} - sum:certscanner.certificates.expired{*}) / sum:certscanner.certificates.total{*} * 100",
      "target": "> 98%",
      "description": "Percentage of certificates that are currently valid"
    },
    {
      "name": "High Security Cipher Rate",
      "query": "sum:certscanner.ciphers.security_distribution{security_level:high} / sum:certscanner.ciphers.security_distribution{*} * 100", 
      "target": "> 90%",
      "description": "Percentage of cipher suites classified as high security"
    },
    {
      "name": "Scan Coverage Rate",
      "query": "count_nonzero(avg:certscanner.execution.status{*} by {host}) / count(avg:datadog.agent.running{*} by {host}) * 100",
      "target": "> 95%", 
      "description": "Percentage of managed hosts with recent crypto scans"
    }
  ]
}

8.2 Performance Monitoring

Monitor TYCHON Quantum Readiness performance and resource usage via Datadog Infrastructure monitoring:

# Datadog Agent process monitoring for TYCHON Quantum Readiness
# /etc/datadog-agent/conf.d/process.yaml

init_config:

instances:
  - name: certscanner_execution
    search_string: ['certscanner.*-mode local']
    exact_match: false
    tags: 
      - 'process_type:crypto_scanner'
      - 'team:security'
      - 'deployment_method:datadog'
    thresholds:
      # Alert if TYCHON Quantum Readiness process runs longer than 10 minutes
      critical: [0, 600]  
      warning: [0, 300]

Custom Performance Metrics

# Custom metrics for TYCHON Quantum Readiness performance tracking

def track_certscanner_performance():
    """Track TYCHON Quantum Readiness execution performance metrics"""
    
    import psutil
    import time
    from datadog import statsd
    
    # Monitor resource usage during scan
    process_start = time.time()
    initial_memory = psutil.virtual_memory().used
    initial_cpu = psutil.cpu_percent()
    
    # Execute TYCHON Quantum Readiness (your existing execution code here)
    # ...
    
    # Track execution time
    execution_time = time.time() - process_start
    statsd.histogram('certscanner.execution.duration', execution_time, 
                    tags=['scan_type:comprehensive'])
    
    # Track resource usage
    final_memory = psutil.virtual_memory().used
    memory_used = final_memory - initial_memory
    statsd.gauge('certscanner.resources.memory_used_mb', memory_used / 1024 / 1024)
    
    # Track scan efficiency (assets per second)
    if crypto_assets > 0:
        efficiency = crypto_assets / execution_time
        statsd.gauge('certscanner.performance.assets_per_second', efficiency)

Enterprise Use Cases

DevSecOps Integration

Integrate crypto security monitoring into DevSecOps workflows:

  • CI/CD Pipeline Monitoring: Track crypto changes in deployment pipelines
  • Application Correlation: Link crypto assets to specific applications and services
  • Performance Impact: Monitor how crypto implementations affect application performance
  • Security Shift-Left: Early detection of crypto vulnerabilities in development

Cloud-Native Security

Cloud-native crypto monitoring for containerized and serverless environments:

# Kubernetes DaemonSet for TYCHON Quantum Readiness execution
apiVersion: apps/v1
kind: DaemonSet
metadata:
  name: certscanner-daemonset
  namespace: security-monitoring
spec:
  selector:
    matchLabels:
      name: certscanner
  template:
    metadata:
      labels:
        name: certscanner
        tags.datadoghq.com/service: "crypto-scanner"
        tags.datadoghq.com/version: "1.0.42"
    spec:
      containers:
      - name: certscanner
        image: company/certscanner:1.0.42
        env:
        - name: DD_API_KEY
          valueFrom:
            secretKeyRef:
              name: datadog-secret
              key: api-key
        - name: DD_SITE  
          value: "datadoghq.com"
        command: ["/bin/sh"]
        args: 
        - -c
        - |
          # Execute TYCHON Quantum Readiness and submit to Datadog
          /opt/certscanner/certscanner -mode local -scanfilesystem -scanconnected \
            -outputformat flatndjson -output /tmp/crypto-scan.ndjson \
            -tags "kubernetes,daemonset,$HOSTNAME"
          
          # Submit via Datadog Agent
          python3 /scripts/datadog-submit-results.py /tmp/crypto-scan.ndjson
        volumeMounts:
        - name: host-filesystem
          mountPath: /host
          readOnly: true
        - name: datadog-scripts
          mountPath: /scripts
      volumes:
      - name: host-filesystem
        hostPath:
          path: /
      - name: datadog-scripts
        configMap:
          name: certscanner-datadog-scripts

Integration Examples

Automated Compliance Scanning

Automated crypto compliance monitoring with Datadog Synthetic Monitoring:

# Datadog Synthetic test for crypto compliance
from datadog_api_client import ApiClient, Configuration
from datadog_api_client.v1.api.synthetics_api import SyntheticsApi

def create_crypto_compliance_test():
    configuration = Configuration()
    
    with ApiClient(configuration) as api_client:
        api_instance = SyntheticsApi(api_client)
        
        test_config = {
            "config": {
                "request": {
                    "method": "POST",
                    "url": "https://internal-api.company.com/crypto-scan",
                    "body": '{"action": "trigger_certscanner", "target": "compliance_hosts"}',
                    "headers": {"Content-Type": "application/json"}
                },
                "assertions": [
                    {
                        "type": "statusCode",
                        "operator": "is", 
                        "target": 200
                    },
                    {
                        "type": "responseTime",
                        "operator": "lessThan",
                        "target": 30000
                    }
                ]
            },
            "locations": ["aws:us-east-1"],
            "message": "Crypto compliance scan failed. Check TYCHON Quantum Readiness deployment.",
            "name": "Crypto Compliance Monitoring",
            "options": {
                "tick_every": 3600,  # Hourly
                "min_failure_duration": 300
            },
            "type": "api"
        }
        
        api_instance.create_synthetics_api_test(body=test_config)

Infrastructure Monitoring

Monitor crypto infrastructure health with Datadog Infrastructure metrics:

# Infrastructure monitoring configuration
# Monitor hosts running TYCHON Quantum Readiness for performance impact

# Custom metric collection
crypto_infrastructure_health:
  - metric: "certscanner.infrastructure.ssl_service_count"
    query: "sum:network.tcp.listening{port:443} by {host}"
    
  - metric: "certscanner.infrastructure.certificate_service_health"  
    query: "avg:network.tcp.can_connect{port:443} by {host}"
    
  - metric: "certscanner.infrastructure.memory_crypto_libraries"
    query: "sum:process.memory.rss{process_name:*ssl*} by {host}"

# Alert on infrastructure changes that affect crypto
infrastructure_alerts:
  - name: "SSL Service Availability Impact"
    query: "change(avg:network.tcp.can_connect{port:443}, 'last_5m')"
    threshold: "< -0.1"  # 10% drop in SSL connectivity
    
  - name: "Crypto Library Memory Usage Spike"
    query: "avg:process.memory.rss{process_name:*ssl*}" 
    threshold: "> 1000000000"  # > 1GB memory usage

Step 7: End-to-End Validation

7.1 Complete Integration Test

Validate your complete TYCHON + Datadog setup:
  1. Verify Agent Status:
  2. # Check agent is connected and healthy
    sudo datadog-agent status | head -20
    # Should show "Status: Running" and connection to Datadog
  3. Test TYCHON Execution:
  4. # Test as Datadog agent user
    sudo -u dd-agent /opt/certscanner/certscanner -mode local -quickscan -verbose
    # Should complete without permission errors
  5. Verify Custom Check Loading:
  6. # List all loaded checks - certscanner should appear
    sudo datadog-agent check certscanner --check-rate
    # Should show successful execution without errors
  7. Confirm Metrics in Datadog:
    • • Go to Metrics → Summary in Datadog
    • • Search for "certscanner" - should see multiple metrics
    • • Verify metrics have recent data (within last hour)
  8. Validate Dashboard Display:
    • • Open your "TYCHON Crypto Security Monitoring" dashboard
    • • All widgets should display data (not "N/A" or empty)
    • • Verify host names appear correctly
  9. Test Alert Triggers:
  10. # Temporarily create high vulnerability count (for testing)
    # This should trigger your PQC vulnerability alert
    sudo datadog-agent check certscanner --check-rate --log-level debug

7.2 Troubleshooting Common Issues

Common issues and solutions:
Issue: "No data in dashboard widgets"
Solutions:
  • • Check if custom check is running: sudo datadog-agent check certscanner
  • • Verify TYCHON binary permissions: sudo -u dd-agent /opt/certscanner/certscanner -version
  • • Check agent logs: sudo tail -100 /var/log/datadog/agent.log | grep certscanner
  • • Ensure firewall allows Datadog agent outbound connections
Issue: "Permission denied errors"
Solutions:
  • • Fix binary ownership: sudo chown dd-agent:dd-agent /opt/certscanner/certscanner
  • • Set execute permissions: sudo chmod +x /opt/certscanner/certscanner
  • • Check configuration file ownership and permissions
Issue: "Alerts not triggering"
Solutions:
  • • Verify metrics are flowing: Check Metrics → Explorer
  • • Test alert query in Metrics → Explorer first
  • • Check notification channels are configured correctly
  • • Review monitor evaluation windows and thresholds

Best Practices & Optimization

Datadog Integration Best Practices

  • Tag Strategy: Use consistent tagging for environment, team, and asset classification
  • Metric Namespacing: Prefix all metrics with 'certscanner.' for organization
  • Log Indexing: Configure selective log indexing to control costs
  • Retention Policies: Set appropriate retention for crypto intelligence data
  • Rate Limiting: Implement rate limiting for API submissions

Cost Optimization

Strategy: Selective Metrics Collection
Submit only critical crypto metrics, use logs for detailed forensics
Strategy: Intelligent Sampling
Sample detailed logs, always send security-critical events
Strategy: Metric Aggregation
Pre-aggregate metrics at host level before submission

Scaling Considerations

  • Batch Processing: Process multiple scan results in batches
  • Queue Management: Use message queues for high-volume environments
  • Regional Deployment: Deploy Datadog agents regionally for performance
  • Load Balancing: Distribute scan execution across time windows